Color images' segmentation using scale space filter and markov random field
نویسندگان
چکیده
-A new hybrid method is presented that combines the scale space filter (SSF) and Markov random field (MRF) for color image segmentation. The fundamental idea of the SSF is to use the convolution of Gaussian functions and image-histogram to generate a scale space image and then find the proper interval bounded by the local extrema of the derivatives. The Gaussian function is with zero mean and varied standard deviation. Using the SSF the different scaled histogram is separated into intervals corresponding to peaks and valleys. The MRF makes use of the property that each pixel in an image has some relationship with other pixels. The basic construction of an MRF is a joint probability given the original data. The original data is the image that is obtained from the source and the result is called the label image. Because the MRF needs a number of segments before it converges to the global minimum, the SSF is exploited to do coarse segmentation (CS) and then MRF is used to do fine segmentation (FS) of the images. Basically, the former is histogram-based segmentation, whereas the latter is neighborhood-based segmentation. Finally, experimental results obtained from using SSF alone, MRF using iterated conditional mode (ICM), and MRF using Gibbs sampling are compared. Color image segmentation Markov random field (MRF) Scale space filter (SSF) Gibbs distribution Iterated conditional modes (ICM) Gibbs sampling (simulated annealing)
منابع مشابه
Unsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملCluster-Based Image Segmentation Using Fuzzy Markov Random Field
Image segmentation is an important task in image processing and computer vision which attract many researchers attention. There are a couple of information sets pixels in an image: statistical and structural information which refer to the feature value of pixel data and local correlation of pixel data, respectively. Markov random field (MRF) is a tool for modeling statistical and structural inf...
متن کاملAutomatic Segmentation of Lip Images Based on Markov Random Field
This paper addresses the problem of lip segmentation in color space that is a crucial issue to a successful lip-reading system. We present a new segmentation approach to lip contour extraction by taking account of the maximum a posterior Markov random field (MAPMRF) framework. We first examine various color models and select a simple color transform derived from LUX and 1976 CIELAB color space ...
متن کاملA Markov random field image segmentation model for color textured images
We propose a Markov random field (MRF) image segmentation model, which aims at combining color and texture features. The theoretical framework relies on Bayesian estimation via combinatorial optimization (simulated annealing). The segmentation is obtained by classifying the pixels into different pixel classes. These classes are represented by multi-variate Gaussian distributions. Thus, the only...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 25 شماره
صفحات -
تاریخ انتشار 1992